Part Number Hot Search : 
G125G 5LP01S12 ADC12 8YITE EGS031 16X5R T3904 SRL5017R
Product Description
Full Text Search
 

To Download PMB2333 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 ICs for Communications
Mixer/Amplifier PMB 2333 Version 1.2
Preliminary Data Sheet 09.97
T2333-XV12-P3-7600
Edition 09.97 Published by Siemens AG, Bereich Halbleiter, MarketingKommunikation, Balanstrae 73, 81541 Munchen (c) Siemens AG 1995. All Rights Reserved. Attention please! As far as patents or other rights of third parties are concerned, liability is only assumed for components, not for applications, processes and circuits implemented within components or assemblies. The information describes the type of component and shall not be considered as assured characteristics. Terms of delivery and rights to change design reserved. For questions on technology, delivery and prices please contact the Semiconductor Group Offices in Germany or the Siemens Companies and Representatives worldwide (see address list). Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Siemens Office, Semiconductor Group. Siemens AG is an approved CECC manufacturer. Packing Please use the recycling operators known to you. We can also help you - get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred. Components used in life-support devices or systems must be expressly authorized for such purpose! Critical components1 of the Semiconductor Group of Siemens AG, may only be used in life-support devices or systems2 with the express written approval of the Semiconductor Group of Siemens AG. 1 A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or effectiveness of that device or system. 2 Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain and sustain human life. If they fail, it is reasonable to assume that the health of the user may be endangered.
Ausgabe 09.97 Herausgegeben von Siemens AG, Bereich Halbleiter, MarketingKommunikation, Balanstrae 73, 81541 Munchen (c) Siemens AG 1995. Alle Rechte vorbehalten. Wichtige Hinweise! Gewahr fur die Freiheit von Rechten Dritter leisten wir nur fur Bauelemente selbst, nicht fur Anwendungen, Verfahren und fur die in Bauelementen oder Baugruppen realisierten Schaltungen. Mit den Angaben werden die Bauelemente spezifiziert, nicht Eigenschaften zugesichert. Liefermoglichkeiten und technische Anderungen vorbehalten. Fragen uber Technik, Preise und Liefermoglichkeiten richten Sie bitte an den Ihnen nachstgelegenen Vertrieb Halbleiter in Deutschland oder an unsere Landesgesellschaften im Ausland. Bauelemente konnen aufgrund technischer Erfordernisse Gefahrstoffe enthalten. Auskunfte daruber bitten wir unter Angabe des betreffenden Typs ebenfalls uber den Vertrieb Halbleiter einzuholen. Die Siemens AG ist ein Hersteller von CECCqualifizierten Produkten. Verpackung Bitte benutzen Sie die Ihnen bekannten Verwerter. Wir helfen Ihnen auch weiter - wenden Sie sich an Ihren fur Sie zustandigen Vertrieb Halbleiter. Nach Rucksprache nehmen wir Verpackungsmaterial sortiert zuruck. Die Transportkosten mussen Sie tragen. Fur Verpackungsmaterial, das unsortiert an uns zuruckgeliefert wird oder fur das wir keine Rucknahmepflicht haben, mussen wir Ihnen die anfallenden Kosten in Rechnung stellen. Bausteine in lebenserhaltenden Geraten oder Systemen mussen ausdrucklich dafur zugelassen sein! Kritische Bauelemente1 des Bereichs Halbleiter der Siemens AG durfen nur mit ausdrucklicher schriftlicher Genehmigung des Bereichs Halbleiter der Siemens AG in lebenserhaltenden Geraten oder Systemen2 eingesetzt werden. 1 Ein kritisches Bauelement ist ein in einem lebenserhaltenden Gerat oder System eingesetztes Bauelement, bei dessen Ausfall berechtigter Grund zur Annahme besteht, da das lebenserhaltende Gerat oder System ausfallt bzw. dessen Sicherheit oder Wirksamkeit beeintrachtigt wird. 2 Lebenserhaltende Gerate und Systeme sind (a) zur chirurgischen Einpflanzung in den menschlichen Korper gedacht, oder (b) unterstutzen bzw. erhalten das menschliche Leben. Sollten sie ausfallen, besteht berechtigter Grund zur Annahme, da die Gesundheit des Anwenders gefahrdet werden kann.
PMB 2333 Revision History: Previous Version: Page (in 06.96 Version) 10 10 10 Page (in new Version) 10 10 10 10 10 10 10 10 10 10 10 10 10 11 11 11 25 26 32 26 27 33
Current Version: 09.97 06.96 Subjects (major changes since last revision)
Supply Voltage -> 5.0V max. Input Voltage VLO/X -> 5.0V max. Input Voltage VAI -> VAO+0.3V max. Input Voltage VAI AC Peak -> -2V min. Input Voltage VGC -> -0.3V min. / VS+0.3 max. Input Voltage VSTB -> 5.0V max. Open Collector Output Voltage VMO/X ->1.7V min. / 5.0V max. Amplifier Current (Base, Peak) IAI -> 6mA Amplifier Power dissipation PAMPtot -> 105mW Thermal Resistance RthJA -> 213K/W Thermal Resistance RthSO -> 160K/W ESD Integrity Amplifier f=0.9GHz -> OPT Amplifier f=1.8GHz -> OPT Diagram 5 - Identical Values - New Printout Update Of / Additional Application Information Correction Of Printing Mistakes
PMB 2333 Revision History: Previous Version: Page (in 11.95 Version) Page (in 06.96 Version)
Current Version: 06.96 11.95 Subjects (major changes since last revision)
Update of RF/S-parameters becauce of cavitiy change, correction of printing mistakes, update of application circuits
PMB 2333
Table of Contents 1 1.1 1.2 1.3 1.4 1.5 1.6 2 2.1 2.2 2.3 2.4 3 3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.2 3.2.1 3.2.2 3.2.3 3.3 3.3.1 3.3.2 3.3.3 3.3.4 4
Page
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 Functional Description, Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 Circuit Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Operational Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 AC/DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 Test Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 Application Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 Receiver Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 Shortform Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 Measurement results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 Application hint - Mixer metrics versus mixer current . . . . . . . . . . . . . . . . . . .40 Circuit diagram and PCB layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43 Upconversion Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48 Shortform Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48 Measurement results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49 Circuit diagram and PCB layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51 Receiver/SAW Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57 Shortform Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57 System calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59 Measurement results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 Circuit diagram and PCB layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69
Semiconductor Group
4
09.97
Mixer/Amplifier
PMB 2333
Version 1.2 1 1.1 * * * * * * Overview Functional Description, Benefits
Bipolar IC
New B6HF bipolar technology, 25GHz fT Small outline P-TSSOP 16 package Reduced external components Frequency range up to 3.0GHz Amplifier may be used as LNA or Driver LNA mode *1.7dB typ. noise figure at 1.8GHz *5mA typ. current consumption
P-TSSOP-16
* Driver mode * +12dBm output at 1dB compression * 20mA current consumption * * * * * * Gilbert cell mixer with high gain 2.7 - 4.5V voltage supply -40C to +85C operational temperature range Standby function High isolation values for amplifier and mixer Good crosstalk performance Applications
1.2
* Cellular radio systems * Cordless telephone systems * WLAN-Systems
Type PMB 2333
Semiconductor Group
Version V1.2
5
Ordering Code Q67006-A6128
Package P-TSSOP-16
09.97
PMB 2333
1.3
Pin Configuration
(top view)
AREF AI GND1 GND1 MO MOX VCC LOX
1 2 3 4 5 6 7 8
16 15 14 13 12 11 10 9
GC AO GND1
STB MIX MI GND2 LO
P-TSSOP16
Semiconductor Group
6
09.97
PMB 2333
1.4 Pin No.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Pin Definitions and Functions Symbol
AREF AI GND1 GND1 MO MOX VCC LOX LO GND2 MI MIX STB GND1 AO GC
Function
Amplifier bias supply for signal input Amplifier signal base input Amplifier ground Amplifier ground Mixer signal open collector output Mixer signal open collector output Voltage supply total circuit Mixer local oscillator signal base input, inverted Mixer local oscillator signal base input, not inverted Mixer ground Mixer signal emitter input, not inverted Mixer signal emitter input, inverted Standby mixer and bandgap Amplifier ground Amplifier signal open collector output Amplifier gain control
Semiconductor Group
7
09.97
PMB 2333
1.5
Functional Block Diagram
14 GND1
12 MIX
10 GND2
13 STB
16 GC
15 AO
11 MI
MO
MOX
Bias1
LO LOX
Amplifier
Bias
Bias2
Mixer
MIX MI
1
2
GND1 4
MOX 6
VCC 7
AREF
GND1
Semiconductor Group
8
LOX 8
3
MO
AI
5
9
LO
09.97
PMB 2333
1.6 MIXER
Circuit Description
The mixer used in this design is a general purpose up-/down conversion gilbert cell mixer. Via the pins MI/MIX the RF enters the IC. Using an external supplied local oscillator at LO/LOX a converted output signal is created at the open collector output pins MO/MOX. The open collector pins need to be connected to an external voltage supply. The RF connection to the mixer inputs can be single ended on balanced, capacitive or inductive. To improve the mixer performance external resistors at MI/MIX make it possible to adjust the mixer current. Voltage supply for the mixer has to be connected to the pin VCC and to GND2. AMPLIFIER The amplifier may be used as a low noise amplifier LNA or as a driver. At pin AI the RF signal enters the IC, at the open collector output AO, which need to be connected to supply voltage, the amplified signal is external available for further use. Matching networks at in-/and output can be used for improving the gain and the noise performance. To reduce the series feedback of the emitter line the amplifier is connected to ground via three GND1 pins. At AREF a internal supplied reference voltage is available for the DC biasing of AI. This dc output should be implemented in an input matching network. The voltage supply for the amplifier is also VCC. The dc-level at the pin GC allows to adjust the amplifier current. Lower current is recommended for using the amplifier as an LNA, high current for using it as a driver. COMMON Differential signals and symmetrical circuits are used throughout the mixer part of the IC. An internal bias driver generates supply voltage and temperature compensated reference voltages. The STB pin allows the mixer and bandgap part of the IC to be switched in a low power mode. All pins with the exception of GND1,2 and AI/AO are ESD protected.
Semiconductor Group
9
09.97
PMB 2333
2 2.1
Electrical Characteristics Absolute Maximum Ratings
The maximum ratings may not be exceeded under any circumstances, not even momentarily and individually, as permanent damage to the IC will result. Ambient temperature Tamb = -40C...+85C # Parameter Symbol Limit Values Min
1 2a 2b Supply Voltage Input Voltage Input Voltage VS VMI/MIX VLO/LOX -0.3 -0.3 0.6
Units
Remarks
Max
5.0 1.9 VS+0.3 5.0max. V V V V V V V VS+0.3 2.7max. V V V V V V V V V mA mA mW VPP C
DC and AC Freq.>1MHz
VS = 0
2c
Input Voltage
VAI
-0.3
VAO+0.3 3.5max.
2d 2e
Input Voltage (AC Peak) Input Voltage
VAI VGC
-2 -0.3
IAI < nA
2f
Input Voltage
VSTB
-0.3
VS+0.3 5.0max.
3a 3b
Output Voltage Open Collector Output Voltage
VAREF VMO/MOX
-0.3 1.7
2.0 VS+0.3 5.0max.
3c 3d 4a 4b 4c 5 6
Open Collector Output Voltage Open Collector Output Voltage Amplifier Current (Collector) Amplifier Current (Base, Peak) Amplifier Power Dissipation Differential Input Voltage Junction Temperature
VAO VAO IAO IAI PAMPtot VIDIFF Tj
-0.3 -0.3
3.5 7.0 30 6.0 105 2.0 125
Base open RB<50k
Semiconductor Group
10
09.97
PMB 2333
Absolute Maximum Ratings The maximum ratings may not be exceeded under any circumstances, not even momentarily and individually, as permanent damage to the IC will result. Ambient temperature Tamb = -40C...+85C # Parameter Symbol Limit Values Min
7 8a 8b 9 Storage Temperature Thermal Resistance Thermal Resistance ESD integrity, all pins without AI,AO and GND1/2 TS RthJA RthSO VESD -500 -40
Units
Remarks
Max
125 213 160 500 C K/W K/W V
1) 2) 3)
1) Attention: Do not exceed the max. junction temperature 2) Junction to soldering point, simulated with FEM 3) HBM according MIL STD 883D, method 3015.7,and EOS/ESD assn. standard S5.1-1993
Semiconductor Group
11
09.97
PMB 2333
2.2
Operational Range
Within the operational range the IC operates as described in the circuit description. The AC/DC characteristic limits are not guaranteed. Supply voltage VVCC = 2.7V...4.5V, Ambient temperature Tamb = -40C...85C
#
Parameter
Symbol
Limit Values
Min Max 3000 3000 3000 3000 2.0 0 2.0 0
Units
Remarks
1 2 3 4 5 6 7 8
AI Input Frequency MI/X Input Frequency LO/X Input Frequency IF Intermediate Frequency Standby Voltage On Standby Voltage Off Gain Control Voltage, High Gain Control Voltage, Low
fAI fMI fLO
MHz MHz MHz MHz V V V V Diagram 5 Diagram 5
fIF STBON STBOFF GCHigh GCLow
VS
0.5
2.7
0.6
Note: Power levels refer to 50 Ohms impedance
Semiconductor Group
12
09.97
PMB 2333
2.3
AC/DC Characteristics
AC/DC characteristics involve the spread of values guaranteed within the specified supply voltage and ambient temperature range. Typical characteristics are the median of the production. Supply voltage VVCC = 2.7V...4.5V, Ambient temperature Tamb = +25C
#
Parameter
Symbol
Limit Values
Min Typ
Units Test Test Conditions Circuit Max
Supply Current
1a Supply current, total IC I5,6,7,15 23.6 mA STB ON, no external resistors at MI/MIX* STB ON, no external resistors at MI/MIX* STB OFF, GC=0V 1, IAO=20 mA 1, IAO=0 mA 1
1b
Supply current, total IC
I5,6,7,15
1.6
mA
2
Supply current, total IC
I5,6,7,15
<20
A
* Minimum value for external resistors at MI/MIX: R1=R2=33Ohm
Semiconductor Group
13
09.97
PMB 2333
AC/DC Characteristics AC/DC characteristics involve the spread of values guaranteed within the specified supply voltage and ambient temperature range. Typical characteristics are the median of the production. Supply voltage VVCC = 2.7V to 4.5V, Ambient temperature Tamb = +25
#
Parameter
Symbol
Limit Values
Min Typ
Unit Test Test Conditions Circuit Max
AMPLIFIER-Driver, Signal Input AI, IAO=20mA, VAO=3.3V, f=2.5GHz
3 4 5 Input impedance, vs. freq. S11 Max. input level, 1db compression PAI 0.0 10.0 dbm dbm Diagram 3a f=2.5GHz f=2.5GHz 3 1 1
Input intercept, third order IICPDAI
AMPLIFIER-Driver, Signal Output AO, IAO=20mA, VAO=3.3V, f=2.5GHz
6 7 8 Output current Output freq. impedance IAO vs. S22 S21Amp +12.5 db 20.0 mA Diagram 3a f=2.5GHz 1 3 1
Power gain
AMPLIFIER-Driver, Signal Input AI, IAO=0mA, VAO=3.3V, f=2.5GHz
9 10 11 Input impedance, vs. freq. S11 Max. input change level, 1db PAI 0.0 20.0 dbm dbm Diagram 3c f=2.5GHz f=2.5GHz 3 1 1
Input intercept, third order IICPAI
AMPLIFIER-Driver, Signal Output AO, IAO=0mA, VAO=3.3V, f=2.5GHz
12 13 14 Output current Output freq. impedance IAO vs. S22 S21Amp < -13 db 0 mA Diagram 3c f=2.5GHz 1 3 1
Power gain
All amplifier measurements have be done with Siemens RT5880 Duroid (Teflon) Boards
Semiconductor Group
14
09.97
PMB 2333
AC/DC Characteristics AC/DC characteristics involve the spread of values guaranteed within the specified supply voltage and ambient temperature range. Typical characteristics are the median of the production. Supply voltage VVCC = 2.7V to 4.5V, Ambient temperature Tamb = +25
#
Parameter
Symbol
Limit Values
Min Typ
Unit Test Test Conditions Circuit Max
AMPLIFIER-LNA, Signal Input AI, IAO=5mA, VAO=3.3V, f=1.8GHz 15 Input impedance, vs. freq. S11 Diagram 3b 16 17 18 Max.input level, 1dB compression Input intercept, third order Noise figure PAI IICPAI FAI -12.0 1.0 1.7 dBm dBm dB f=1.8GHz f=1.8GHz f=1.8GHz
3 1 1 1
AMPLIFIER-LNA, Signal Output AO, IAO=5mA, VAO=3.3V, f=1.8GHz 19 20 21 Output current Power gain IAO S21LNA 5.0 12.0 mA Diagram 3b dB f=1.8GHz 1 3 1 Output impedance vs. freq. S22
AMPLIFIER-LNA, Signal Input AI, IAO=0mA, VAO=3.3V, f=1.8GHz
22 23 23 Input impedance, vs. freq. Max. input level, 1db change Input intercept, third order S11 PAI IICPAI 0.0 20.0 dbm dbm Diagram 3c f=1.8GHz f=1.8GHz 3 1 1
AMPLIFIER-LNA, Signal Output AO, IAO=0mA, VAO=3.3V, f=1.8GHz
24 25 26 Output current Power gain IAO S21A 0 < -17 mA Diagram 3c db f=1.8GHz 1 3 1 Output impedance vs. freq. S22
All LNA measurements have be done with Siemens RT5880 Duroid (Teflon) Boards
Semiconductor Group
15
09.97
PMB 2333
AC/DC Characteristics AC/DC characteristics involve the spread of values guaranteed within the specified supply voltage and ambient temperature range. Typical characteristics are the median of the production. Supply voltage VVCC = 2.7V to 4.5V, Ambient temperature Tamb = +25
#
Parameter
Symbol
Limit Values
Min Typ
Unit Test Test Conditions Circuit Max
MIXER, Signal Input MI/MIX, Upconversion, R1,2=33Ohm 27 28 29 Input impedance vs .freq. Max. input level, 1 db compression Input intercept point ZMI PMI IICP3MI -7 6 dbm dbm Diagram 4a fMI=0.66GHz fMI=0.66GHz 4 1* 1*
MIXER, Local Oscillator Input LO/LOX, Upconversion, R1,2=33Ohm 30 31 Input impedance vs freq. Input level ZLO PLO 0 dbm Diagram 4c fLO=2.0GHz 4 1*
MIXER, Signal Output MO/MOX, fout = 2.66GHz, Upconversion, R1,2=33Ohm 32 Output current IMO/X 10.4 mA with ext. resistors at MI/MIX fMO=2.66GHz fMO=2.66GHz fMO=2.66GHz 1* 1*
33 34 35
Output resistance Output capacitance Power gain
RMODiff CMODiff PMI
600 0.57 8
Ohm pF db
MIXER, Isolation Between In-/Output, fout = 2.66GHz, Upconversion, R1,2=33Ohm 37 38 39 40 LO to MO LO to MI MO to MI MO to LO ALO-MO ALO-MI AMO-MI AMO-LO 30 35 40 45 db db db db 1* 1* 1* 1*
* MI/MO Input/Output including matching network
Semiconductor Group
16
09.97
PMB 2333
AC/DC Characteristics AC/DC characteristics involve the spread of values guaranteed within the specified supply voltage and ambient temperature range. Typical characteristics are the median of the production. Supply voltage VVCC = 2.7V to 4.5V, Ambient temperature Tamb = +25
#
Parameter
Symbol
Limit Values
Min Typ
Unit Test Test Conditions Circuit Max
MIXER, Signal Input MI/MIX, Downconversion, R1,2=180Ohm 41 42 43 44 45 46 47 48 49 50 51 52 53 Blocking level, f=800kHz, IF=45MHz Pin, wanted = -20dBm Noise figure, ssb (NFssbNFdsb+3dB) IF=45MHz Input intercept point, f=800kHz, IF= 45MHz Input impedance vs .freq. ZMI Max. input level, 1 db PMI compression at MO/MOX, IF=45MHz PMI PMI IICP3MI IICP3MI IICP3MI Pin,unwan. PBL,unwan. PBL,unwan. FMI FMI FMI -15 -14 -9 0 -1 +5 -16 -16 -10 9 11 14 dBm dBm dBm dBm dBm dBm dBm dBm dBm dB dB dB Diagram 4b f=0.9GHz f=1.8GHz f=2.5GHz f=0.9GHz f=1.8GHz f=2.5GHz f=0.9GHz f=1.8GHz f=2.5GHz f=0.9GHz f=1.8GHz f=2.5GHz 4 2a 2a 2a 2a 2a 2a 2a 2a 2a * * *
MIXER, Local Oscillator Input LO/LOX, Downconversion, R1,2=180Ohm 54 55 56 57 Input impedance vs freq. Input level ZLO PLO PLO PLO -3 -3 -3 dBm dBm dBm Diagram 4d f=0.9GHz f=1.8GHz f=2.5GHz 4 2a, ** 2a, ** 2a, **
* matching network used ** referenced for specified mixer performance
Semiconductor Group
17
09.97
PMB 2333
AC/DC Characteristics AC/DC characteristics involve the spread of values guaranteed within the specified supply voltage and ambient temperature range. Typical characteristics are the median of the production. Supply voltage VVCC = 2.7V to 4.5V, Ambient temperature Tamb = +25
#
Parameter
Symbol
Limit Values
Min Typ Max
Unit
Test Test Conditions Circuit
MIXER, Signal Output MO/MOX, Downconversion, R1,2=180Ohm 58 59 60 61 62 63 64 65 66 67 68 Power gain, IF=300MHz Power gain, IF=45MHz Output capacitance Output current Output resistance IMO+MOX RMODiff RMODiff CMODiff CMODiff PMI PMI PMI PMI PMI PMI 4.0 32 25 0.36 0.39 15 14 9 7 7 2.5 mA incl. R1,R2 2a 2b 2a 2b 2a 2a 2a 2b 2b 2b kOhm IF=45MHz kOhm IF=300MHz pF pF db db db db db db IF=45MHz IF=300MHz f=0.9GHz f=1.8GHz f=2.5GHz f=0.9GHz f=1.8GHz f=2.5GHz
MIXER, Isolation Between In-/Output, 0.9GHz, Downconversion, R1,2=180Ohm 69 70 71 72 73 MI to MO LO to MO LO to MI MO to MI MO to LO AMI-MO ALO-MO ALO-MI AMO-MI AMO-LO 50 40 35 60 60 db db db db db fMI=945MHz, 2a fLO=900MHz " " " " 2a 2a 2a 2a
Semiconductor Group
18
09.97
PMB 2333
2.4
Test Circuits
Test Circuit 1
LO Input
Toko Balun
TokoBalun 1:2
u=1:2617DB-1016
CK
CK
9
33 82nH MI Input C1 C2 C3 33 L1 82nH CB
8
CB
L0
VCC VCC
CB C1 MO Output
PMB 2333
L1
C3
C2
VCC VCC
Bias Tee CB AO Output
Bias Tee
AI Input
VGC
CB
16
1
DC
Mixer/Driver Amplifier, Upconversion mode Test Circuit 1/MI 1/MO f IF[MHz] 660 2660 L1[nH] 8.2 2.7 C1[pF] 4.7 1.8 C2[pF] 56 1.2 C3[pF] 10 1 CK[pF] 15 X
Semiconductor Group
19
09.97
PMB 2333
Test Circuit 2a
LO Input
Toko Balun
Toko Balun 1:2
u=1:1617DB-1023 u=1:2617DB-1016
CK
CK
9
8
CB
VCC
MI Input
PMB 2333
CK Toko Balun 1:1 CK
180
MO Output
CB
VCC
u=20:2
180
Vogt Transformer Kit, 0.05mm wire u=20:2
VCC VCC
CB Bias Tee CB AO Output
Bias Tee DC
AI Input
VGC
CB
16
1
Mixer/Driver Amplifier, Downconversion mode Test Circuit 2a f IF[MHz] 45 CB[pF] 15/100 CK[pF] 15 X X X X
Semiconductor Group
20
09.97
PMB 2333
Test Circuit 2b
LO Input
Toko Balun
TokoBalun 1:2
u=1:1617DB-1023 u=1:2617DB-1016
CK
CK
9
8
L0
CB
VCC VCC
CB C1 MO Output CK MI Input Toko Balun 1:1 CK 180 CB 180
PMB 2333
L1
C3
C2
VCC VCC
Bias Tee CB AO Output
Bias Tee DC
AI Input
VGC
CB
16
1
Mixer/Driver Amplifier, Downconversion mode Test Circuit 2b f IF[MHz] 300 L0[nH] 680 L1[nH] 150 C1[pF] 2.7 C2[pF] 12 C3[pF] 1.8 CK[pF] 15p
Semiconductor Group
21
09.97
PMB 2333
Test Circuit 3
Port 1 Network analyzer ZL=50Ohm Port 2
Pin x
DUT
Pin y
S-Parameter Measurement of Amplifier S11, S12, S21, S22
The S-Parameters are tested at the indicated frequency on Duroid 5880 Teflon Boards. Via the NWA the capacitive coupling is done. The output levels at port1 and 2 for pin x and y are -30dbm. S11 and S22 have to be considered as design hints and are measured with SIEMENS testboards. Test Amp.S11, S12, S21, S22 Test frequency MHz 30 - 3000 Pin X AI Pin Y AO
Semiconductor Group
22
09.97
PMB 2333
Diagram 3a S-Parameter Amplifier IAO=20mA, VCC=3.3V, f=30-3000MHz
50
3.0 GHz
100
25
2.4 GHz 3.0 GHz 1.8 GHz 2.4 GHz
25 50
250
100
0
250
10
1.8 GHz 900 MHz 900 MHz
10
s11
1k
50
900 MHz 900 MHz 1.8 GHz s21 s12
40 S21 30 20 10
1.8 GHz 2.4 GHz 0.05 3.0 GHz
0.1
100
25
2.4 GHz
0.15 0.2 S12
3.0 GHz
Semiconductor Group
23
1k
250
10
1k
s22
09.97
PMB 2333
Diagram3b S-Parameter Amplifier IAO=5mA, VCC=3.3V, f=30-3000MHz
50
3.0 GHz
100
25
250
100
0
250
10
25
50
1k
1.8 GHz
250 10
900 MHz
900 MHz
50
900 MHz
1.8 GHz s21
20 S21 15 10 5
900 MHz 1.8 GHz 2.4 GHz
0.1 0.15 0.2 S12
s12
2.4 GHz 0.05 3.0 GHz
100
25
3.0 GHz
Semiconductor Group
24
1k
10
2.4 GHz 3.0 GHz
1k
1.8 GHz 2.4 GHz
s11
s22
09.97
PMB 2333
S-Parameter Amplifier IAO=0mA, VCC=3.3V, f=30-3000MHz
50
100
25
250
100
0
250
10
25
50
3.0 GHz
s22 s11
25
900 MHz
100
1.8 GHz 1.8 GHz
900 MHz
50
900 MHz
s21
0.3 S21 0.2 0.1 0.1
1.8 GHz
0.2 0.3 S12
2.4 GHz
3.0 GHz
Semiconductor Group
25
250
10
1k
3.0 GHz
1k
10
1k
09.97
PMB 2333
Diagram 3d Noise Circles Amplifier IAO=5mA, VCC=3.3V;f=0.9GHz
35
40
110
30
45
50
100
90
80
70
60
10
75
120
13 14 0
20
25
0
50 40
0
15
0
200
150
160
170
100
150
200
250
500
10
15
20
25
30
35
40 45 50
75
180
0
1k
5
-170
-160
0 -15
15
40
20
-1
0 10
25
30
35
40
45
50
FMIN = 1.055dB Rn = 10.17 GOPT = 16.01mS BOPT = -2.36mS OPT = 0.128 exp(j 34.4)
Semiconductor Group
26
75
250
10
200
2.00 2.50 3.00
15 0
500
5
1.40 1.60
1k
-5
0
-60
-70
-80
-90
-100
-110
-12
0
-1
30
15
30
250
10
500
20
10
5
1.055 1.10 1.20
1k
0
-10
-20
-30
-4 0
09.97
PMB 2333
Diagram 3e Noise Circles Amplifier IAO=5mA, VCC=3.3V;f=1.8GHz
35
40
110
30
45
50
100
90
80
70
120
60
10 0
75
13 0
20
25
0
50 40
14
15
0
200
150
160
170
100
150
200
250
500
10
15
20
25
30
35
40 45 50
75
180
0
1k
5
-170
1.60
-160
250 10
2.00
15
0 -15
40
20
-1
25
00
30
35
40
45
50
FMIN = 1.278dB Rn = 7.52 GOPT = 21.54mS BOPT = -1.59mS OPT = 0.053 exp(j 136.2)
Semiconductor Group
27
75
1
200
2.50 3.00
15 0
500
5
1.40
1k
-5
0
-60
-70
-80
-90
-100
-110
-12
0
-1
30
15
30
250
10
500
1k
20
10
5
1.278 1.30
0
-10
-20
-30
-4 0
09.97
PMB 2333
Test Circuit 4
Network analyzer ZL=50Ohm
Pin x Port 1
DUT
Port 2 Pin y
S-Parameter Measurement of Mixer S11, S12, S21, S22
Test LO-Input impedance Mi-Input impedance MO-Output impedance
Test Frequency [MHz] 30 - 3000 30 - 3000 30 - 3000
Pin X 8 11 5
Pin Y 9 12 6
The S-Parameters are tested at the indicated frequency and the equivalent parallel or series circuit is calculated on this base. Via the NWA the capacitive coupling is done and the open collector pins are connected to VCC. The output levels at port1 and 2 for pin x and y are -30dbm for MI and MOimpedances and -5dbm for the LO impedance.S-Parameters have to be considered as design hints and are measured with SIEMENS testboards.
Semiconductor Group
28
09.97
PMB 2333
Test Circuit 4a DC Supply
VS MI STB MO
R
P1
50
NWA
P2
DUT
MIX LO MOX LOX 33p
50
33p
R 1:2 DC Supply
50 Mixer Input Impedance Measurement Test Circuit 4b DC Supply R
MI VS STB MO
15n 1H 5,6p 5,6p 50
10p 50 10p
DUT
MIX MOX LO LOX
1:1
680nH 15n P2 NWA P1
5,6p
R
Mixer Local Oscilllator Impedance Measurement
Semiconductor Group
29
09.97
PMB 2333
Test Circuit 4c
R
10p
1n
100n
50
MI
VS
STB
Internal Bias Tees
P1
DUT
MO
NWA
MOX
50
MIX LO
P2
LOX 33p 33p
R 1:2
Power Supply 3.3V
50 Mixer Output Impedance Measurement
Semiconductor Group
30
09.97
PMB 2333
Diagram 4a Mixer MI Input Impedance ZMI, IMO/MOX = 10mA, f=30-3000MHz
50
Rdiff 1.8 GHz 3.0 GHz 3.0 GHz
900 MHz
10
Rsingle 1.8 GHz
100
25
250
900 MHz
1k
100
0
250
10
25
50
1k
250
1k
Diagram 4b Mixer MI Input Impedance ZMI, IMO/MOX = 4mA, f=30-3000MHz
50
50
3.0 GHz 1.8 GHz 900 MHz
0 10 25
Rdiff 3.0 GHz
1.8 GHz 900 MHz
100
25
100
25
100
Rsingle
250
50
Semiconductor Group
31
50
100
25
250
10
1k
250
10
1k
10
1k
09.97
PMB 2333
Diagram 4c Mixer LO Input Impedance ZLO, IMO/MOX = 10mA, f=30-3000MHz
50
100
25
250
100
0
250
10
25
50
1k
3.0 GHz 900 MHz Rsingle
25
Rdiff 2.4 GHz 2.4 GHz
50
1.8 GHz
100
1.8 GHz
Diagram 4d Mixer LO Input Impedance ZLO, IMO/MOX = 4mA, f=30-3000MHz
50
100
25
250
100
0
250
10
25
50
1k
900 MHz 900 MHz 3.0 GHz 3.0 GHz Rsingle
25
250 10
Rdiff
1.8 GHz 2.4 GHz 1.8 GHz
100
2.4 GHz
50
Semiconductor Group
32
1k
250
10
3.0 GHz
900 MHz
1k
1k
10
10
1k
09.97
PMB 2333
Diagram 5
30 25 gain / noise figure [dB] 20 15 10 5 0 -5 -10 -15 -20 0.5 1 1.5 VGC [V] 2 2.5 IAO noise figure gain 20 18 16 14 10 8 6 4 2 0 IAO [mA]
09.97
12
Gain, Noise Figure and IAO versus Gain Control voltage Noise Figure values without correction of attenuation ( 0.4 dB ) at input of the amplifier ->NFmin=1.7dB at VGC=1.91V, amplifier current IAO=5mA, open collector voltage VAO=3.3V ( according test circuit 2, f=1.8GHz).
Semiconductor Group
33
PMB 2333
3 3.1 3.1.1
Application Data Receiver Application Shortform Data
Measurement conditions Ambient temperature TA = 25 C Supply voltage VS = 2.7 V LNA and Mixer input signal fRF = 1960 MHz, PRF = -30 dBm LO signal fLO = 1735 MHz, PLO = -6 dBm IF output fIF = 225 MHz All measurements refer to SMA connectors without consideration of PCB losses Parameter Mixer section Mixer current Conversion gain Noise Figure (DSB) 3rd order input intercept point 1dB-compression point Input blocking level Port matching RF return loss LO return loss IF return loss Isolations LO to IF output ALO-IF 40 dB f = 1735 MHz |S11,RF| |S11,LO| |S11,IF| 12 10 11 dB dB dB IMixer GC NFDSB IICP3 P1dB PBL 4 8.5 6.4 +1 -8 -7 mA dB dB dBm dBm dBm f = 800 kHz, -3dB for wanted signal IMO+IMOX Symbol min. Limit values typ. max. Unit Remarks
Semiconductor Group
34
09.97
PMB 2333
Measurement conditions Ambient temperature TA = 25 C Supply voltage VS = 2.7 V LNA and Mixer input signal fRF = 1960 MHz, PRF = -30 dBm LO signal fLO = 1735 MHz, PLO = -6 dBm IF output fIF = 225 MHz All measurements refer to SMA connectors without consideration of PCB losses Parameter LO to RF input Symbol min. ALO-RF Limit values typ. 43 25 35 48 4.6 12.5 1.8 max. dB dB dB dB mA dB dB assuming a PCB loss of 0.25 dB at AI, typical noise figure at matching circuit results to 1.55 dB fLO = 1735 MHz fimage,min= 1480 MHz fsignal,max= 1990 MHz f = 1960 MHz Unit Remarks
RF input to LO LNA section LNA current Gain Noise Figure
ARF-LO ILNA G NF
3rd order input intercept point 1dB-compression point AI return loss AO return loss
IICP3 P1dB |S11,AI| |S11,AO|
0 -10 11 14
dBm dBm dB dB
Semiconductor Group
35
09.97
PMB 2333
3.1.2
Measurement results
Mixer section
:
12 11 10 9 [dB] 8 7 6 DSB Noise Figure 5 4 1200 Conversion Gain
1400
1600
1800 2000 RF frequency [MHz]
2200
2400
Figure 1: Conversion Gain an Noise Figure versus Frequency
10 Conversion Gain 9 8 [dB] 7 6 DSB Noise Figure 5 4 -20 -18 -16 -14 -12 -10 -8 -6 LO power level [dBm] -4 -2 0
Figure 2: Conversion Gain and Noise Figure versus LO power
Semiconductor Group 36 09.97
PMB 2333
12 Conversion Gain 10 8 DSB Noise Figure [dB] 6 4 2 0 200
205
210
215
220 225 230 frequency [MHz]
235
240
245
250
Figure 3: Conversion Gain and Noise Figure versus IF frequency
0 -10 -20 [dB] -30 -40 -50 -60 1000
fully balanced LO unbalanced MI unbalanced LO+MI unbalanced
1500
2000 frequency [MHz]
2500
3000
Figure 4: Isolation LO to IF In unbalanced case the matching network is replaced by a 10pF series capacitor to one port pin. The other port pin is tied to ground via a second 10pF capacitor. This means no power matching is done.
Semiconductor Group 37 09.97
PMB 2333
0 -5 -10 -15 -20 [dB] -25 -30 -35 -40 -45 -50 1000 1500 2000 frequency [MHz]
LO+MI unbalanced fully balanced MI unbalanced LO unbalanced
2500
3000
Figure 5: Isolation LO to RF
0 -10 -20 [dB] -30 -40 -50 -60 -70 1000
LO+MI unbalanced fully balanced MI unbalanced LO unbalanced
1500
2000 frequency [MHz]
2500
3000
Figure 6: Isolation RF to LO
Semiconductor Group
38
09.97
PMB 2333
LNA section
16 15 14 13 Gain [dB] 12 11 10 9 8 7 6 1000 1500 2000 frequency [MHz] 2500 Noise Figure Gain
3 2.8 2.6 Noise Figure [dB] 2.4 2.2 2 1.8 1.6 1.4 1.2 1 3000
Figure 7: Gain and noise figure versus frequency
0 -5 |S11| -10 [dB] -15 -20 |S12| -25 -30 1000 |S22|
1500
2000 frequency [MHz]
2500
3000
Figure 8: Reverse isolation and return loss versus frequency
Semiconductor Group
39
09.97
PMB 2333
3.1.3
Application hint - Mixer metrics versus mixer current
Mixer current may be increased to obtain a higher Input 3rd Order Intercept (IIP3), higher 1 dB Compression Point (P1dB), and increased Conversion Gain (G). In a typical application, in order to increase mixer current from the minimum level of 800A, R5 and R6 are added as shown in the circuit diagram at the end of this section. These external resistors are placed in parallel to existing bias resistors internal to the PMB2333, thereby reducing the aggregate resistance in the emitters and increasing current. As current is increased by further reduction of the value of R5 and R6, the mixer inputs MI and MIX may begin to suffer `RF Loading' unless RF chokes are used between the MI/MIX pins and R5 / R6 (compare test circuit 1). For the data presented in this section, mixer current was varied in a different manner. To eliminate the effects of RF impedance variation (due to `RF Loading') at MI / MIX caused by changing the values of R5 and R6 for different mixer currents, these resistors were set equal to 1k. Mixer current was then varied by adjusting the power supply voltage Vx. Note that Vx may take on positive values with respect to ground for low (e.g. 1mA) mixer currents, or negative values for higher currents.
MI PMB 2333 mixer MIX
1 pF 3.9 nH
1 k
1 k
2.2 pF
+
Vx
-
10 pF
Figure 9: Modified mixer input circuitry
Semiconductor Group
40
09.97
PMB 2333
Note that the mixer input impedance seen at MI / MIX is a strong function of mixer current. The mixer input balanced-to-unbalanced transformer/matching circuitry was originally tuned for a current of 4mA, and was not re-optimized for each of the other current levels. Despite this limitation, the return loss at the 50 port is better than 10dB over the entire 1 to 10 mA current range. The mixer output (MO / MOX) and local oscillator (LO / LOX) ports exhibit negligible change in impedance over this same current range. Measurement conditions: TA = 25 C Vcc = 2.7 V and 4.5V fRF = 1960 MHz fLO = 1735 MHz, PLO = -6 dBm The Effect of Power Supply Voltage on Mixer Metrics In seeking to improve Mixer Input Third-Order Intercept and 1dB Compression Point, it is important to understand the constraints on these parameters imposed by power supply voltage. Refer to Figure 10. Receiver `Blocking' is predominantly influenced by the Mixer's 1 dB Compression Point (P1dB) and not the Input 3rd Order Intercept Point (IIP3). For a supply voltage of 4.5V, mixer P1dB (referred to the input of the application circuitry) increases with additional mixer current, and begins to flatten out above 8mA. When supply voltage is decreased to 2.7V, mixer P1dB starts flattening out at around 5mA. Note how, at the 2.7V supply voltage, IIP3 continues to increase at currents over 6mA while P1dB flattens out. For a given conversion gain G, while operating at 2.7 Volts, considering only the mixer's Input 3rd Order Intercept (IIP3) might lead one to falsely conclude that increasing current beyond 6mA improves receiver blocking. If, however, conversion gain is decreased, it may be possible to improve the receiver's blocking level with additional mixer current. As shown in Figure 10, the 1 dB compression level, referred to the input, is limited by either current or the available voltage swing at the mixer output. The transition between these two regions takes place at 4mA for the specified conversion gain and supply voltage. Figure 11 gives the DSB mixer noise figure versus the mixer current.
Semiconductor Group
41
09.97
PMB 2333
15 10 5 [dB] / 0 [dBm] -5 -10 -15 0 2 4 6 8 Mixer Current [mA] 10 12
IICP3 P1dB / 2.7V G P1dB / 4.5V
Figure 10: Mixer Input Intercept Point (IIP3), 1 dB Compression Point (P1dB) Referred to Input, Gain (G).
10
DSB Noise Figure [dB]
9
8
7
6
5 0 2 4 6 8 mixer current [mA] 10 12
Figure 11: Mixer DSB Noise Figure
Semiconductor Group 42 09.97
PMB 2333
3.1.4
Circuit diagram and PCB layout
Figure 12: Circuit diagram
Semiconductor Group 43 09.97
PMB 2333
PCB dimensions: 80 x 50 mm Substrate material: FR4 Substrate height: 0.8 mm
Figure 13: PCB top side
Semiconductor Group 44 09.97
PMB 2333
Figure 14: PCB bottom side
Semiconductor Group 45 09.97
PMB 2333
Figure 15: PCB component placement
Semiconductor Group 46 09.97
PMB 2333
List of Components Item 1 2 3 4 5 6 7 Quantity Reference 3 C9, C17, C23 1 C6 1 C8 1 C16 1 C7 1 C22 10 C3, C5, C10, C11, C12, C13, C14, C15, C18, C19 1 C2 1 C4 1 C1 1 C20 1 C21 1 3 2 1 1 1 1 1 1 1 1 5 R1 R3, R5, R6 R4, R7 L6 L4 L5 L2 L1 L3 IC1 Value 1.0 pF 1.5 pF 1.8 pF 2.2 pF 2.7 pF 4.7 pF 10 pF Part SMD/0603 SMD/0603 SMD/0603 SMD/0603 SMD/0603 SMD/0603 SMD/0603
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
12 pF 33 pF 680 pF 1.0 nF 1 F 0 180 1.0 k 3.3 nH 3.9 nH 6.8 nH 22 nH 82 nH 100 nH PMB 2333
SMD/0603 SMD/0603 SMD/0603 SMD/0603 SMD/A SMD/0603 SMD/0603 SMD/0603 SMD/0805 SMD/0805 SMD/0805 SMD/0805 SMD/0805 SMD/0805 Siemens
Tantalum
Murata LQP21A or LQP11A Murata LQP21A or LQP11A Murata LQP21A or LQP11A Coilcraft 0805 Coilcraft 0805 Coilcraft 0805
J1 connector X1, X2, X3, SMA X4, X5 connector
Stocko MKS 1655-6-0-505 Suhner 82 SMA 50-0-41 or Rosenberger 32 K 141-400A2
Semiconductor Group
47
09.97
PMB 2333
3.2 3.2.1
Upconversion Application Shortform Data
Measurement conditions Ambient temperature TA = 25 C Supply voltage VS = 2.7 V Mixer input signal fIF = 190 MHz, PIF = -30 dBm LO signal fLO = 1717 MHz, PLO = -6 dBm Mixer output and driver amplifier input signal fRF = 1907 MHz Parameter Mixer section Mixer current Conversion gain 3rd order input intercept point 1dB-compression point Port matching RF return loss LO return loss IF return loss Isolations RF to LO input LO to RF output Driver section Driver current Gain 3rd order input intercept point 1dB-compression point IAO G IICP3 P1dB 11.0 13.1 +4.5 -6 mA dB dBm dBm 17mA @ 3.3V ARF-LO ALO-RF 38 30 dB dB |S11,RF| |S11,LO| |S11,IF| 10 18 20 dB dB dB IMixer GC IICP3 P1dB 9.5 6 +3.5 -7 mA dB dBm dBm Symbol min. Limit values typ. max. Unit Remarks
Semiconductor Group
48
09.97
PMB 2333
Measurement conditions Ambient temperature TA = 25 C Supply voltage VS = 2.7 V Mixer input signal fIF = 190 MHz, PIF = -30 dBm LO signal fLO = 1717 MHz, PLO = -6 dBm Mixer output and driver amplifier input signal fRF = 1907 MHz Parameter AI return loss AO return loss 3.2.2 Symbol min. |S11,AI| |S11,AO| Limit values typ. 14 12 max. dB dB Unit Remarks
Measurement results
7 6 5 gain [dB] 4 3 2 1 0 1800
1850
1900 frequency [MHz]
1950
2000
Figure 16: Mixer conversion gain versus frequency
Semiconductor Group
49
09.97
PMB 2333
20 15 10 5 0 [dB] -5 -10 -15 -20 -25 -30 1000 1500 2000 frequency [MHz] 2500 3000 |S11| |S12| |S22| |S21|
Figure 17: Driver amplifier gain, reverse isolation, return loss versus frequency
0 -10 -20 [dB] LO to RF -30 -40 -50 -60 1000
RF to LO
1500
2000 frequency [MHz]
2500
3000
Figure 18: Mixer isolations versus frequency
Semiconductor Group
50
09.97
PMB 2333
3.2.3
Circuit diagram and PCB layout
Figure 19: Circuit diagram
Semiconductor Group 51 09.97
PMB 2333
PCB dimensions: 80 x 50 mm Substrate material: FR4 Substrate height: 0.8 mm
Figure 20: PCB top side
Semiconductor Group 52 09.97
PMB 2333
Figure 21: PCB bottom side
Semiconductor Group 53 09.97
PMB 2333
Figure 22: Component placement top side
Semiconductor Group 54 09.97
PMB 2333
Figure 23: Component placement bottom side
Semiconductor Group 55 09.97
PMB 2333
Upconversion Application - List of Components Item 1 2 3 4 5 6 7 Quantity 1 1 1 1 1 2 7 Reference C9 C6 C8 C3 C7 C2, C4 C1, C5, C11, C12, C13, C14, C15 C17 C16 C18, C19, C20 C21 J3, J4 R1 R3 R5, R6 R4, R7 L1, L6 L4, L5 L3 IC1 Value 1.0 pF 1.5 pF 1.8 pF 2.2 pF 2.7 pF 3.3 pF 10 pF Part SMD/0603 SMD/0603 SMD/0603 SMD/0603 SMD/0603 SMD/0603 SMD/0603
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
1 1 3 1 2 1 1 2 2 2 2 1 1 1 5
27 pF 68 pF 1.0 nF 1.0 F 0 10 27 33 1 k 3.3 nH 22 nH 33 nH PMB 2333
SMD/0603 SMD/0603 SMD/0603 SMD/A SMD/0603 SMD/0603 SMD/0603 SMD/0603 SMD/0603 SMD/0603 SMD/0805 SMD/0805 Siemens Stocko MKS 1655-6-0-505 Suhner 82 SMA 50-0-41 or Rosenberger 32 K 141-400A2 Murata LQP11A Coilcraft 0805 Coilcraft 0805 Tantalum
J1 connector X1, X2, X3, SMA X4, X5 connector
Semiconductor Group
56
09.97
PMB 2333
3.3 3.3.1
Receiver/SAW Application Shortform Data
Measurement conditions Ambient temperature TA = 25 C Supply voltage VS = 3.6 V LNA and Mixer input signal fRF = 890 MHz, PRF = -40 dBm LO signal fLO = 972 MHz, PLO = -6 dBm IF output fIF = 82 MHz All measurements refer to SMA connectors without consideration of PCB losses The figures in the mixer section are calculated from a measurement SAW filter + mixer assuming an insertion loss of 3.1dB for the filter at measurement frequency (890MHz). Parameter Mixer section Mixer current Conversion gain Noise Figure (SSB) 3rd order input intercept point input 1dB-compression point LNA section LNA current Gain Noise Figure 3rd order input intercept point input 1dB-compression point AI return loss AO return loss ILNA GLNA NF IICP3 P1dB |S11, AI| |S11, AO| 17 20 1.75 0 -11 14 15 mA dB dB dBm dBm dB dB IMixer GC NFSSB IICP3 P1dB 10 4.5 12 +6.5 -3 mA dB dB dBm dBm IMO+IMOX Symbol
typ. Value
Unit
Remarks
Semiconductor Group
57
09.97
PMB 2333
Measurement conditions Ambient temperature TA = 25 C Supply voltage VS = 3.6 V LNA and Mixer input signal fRF = 890 MHz, PRF = -40 dBm LO signal fLO = 972 MHz, PLO = -6 dBm IF output fIF = 82 MHz All measurements refer to SMA connectors without consideration of PCB losses The figures in the mixer section are calculated from a measurement SAW filter + mixer assuming an insertion loss of 3.1dB for the filter at measurement frequency (890MHz). Parameter Symbol
typ. Value
Unit
Remarks
Cascade figures LNA, resistive 3.1 dB pad (see schematic), SAW filter, mixer Cascade Gain Cascade Noise Figure (SSB) 3rd order input intercept point input 1dB-compression point G NF IICP3 P1dB 18 3.35 -8 -17 dB dB dBm dBm
Semiconductor Group
58
09.97
PMB 2333
3.3.2
System calculations
Due to the use of a SAW filter for mixer input matching and balancing an isolated measurement of the mixer figures is not possible. The following system calculations have valid entries only for the Gain, IP3, and Noise Figure. The input values are either from extra measurements (e.g. SAW filter insertion loss) or adjusted to give a cascade figure that can be measured (e.g. filter+mixer IP3). All non-fat typeface figures have no meaning.
LNA measurement
Hewlett-Packard NoiseCalc +---+ +---+ -| 1 +---| 2 ++---+ +---+ Noise Figure (dB) 0.10 1.65 Gain (dB) -0.10 20.00 IP3 (dBm) 100.00 20.00 System Temp. (C) 25.0 Input Power (dBm) -30.0 Pout (dBm) -30.1 -10.1 Cascade NF (dB) 1.75 Noise Temperature (K) 143.9 Signal-to-Noise Ratio (dB) 82.2 Spur Free Dynamic Range (dB) 74.9 Nominal Detectable Sig (dBm) -112.2 AppCAD
Reference Temperature (C) Noise Bandwidth (MHz) Cascade Gain (dB) Input Intercept Point (dBm) Output Intercept Point (dBm) IM3 Output Level (dBm)
25.0 1.00000 19.90 0.1 20.0 -70.3
1) 2)
PCB loss PMB 2333 LNA
Semiconductor Group
59
09.97
PMB 2333
SAW filter and Mixer
Hewlett-Packard NoiseCalc +---+ +---+ -| 1 +---| 2 ++---+ +---+ Noise Figure (dB) 3.10 12.00 Gain (dB) -3.10 4.50 IP3 (dBm) 100.00 11.00 System Temp. (C) 25.0 Input Power (dBm) -30.0 Pout (dBm) -33.1 -28.6 Cascade NF (dB) 15.10 Noise Temperature (K) 9094.2 Signal-to-Noise Ratio (dB) 68.9 Spur Free Dynamic Range (dB) 72.3 Nominal Detectable Sig (dBm) -98.9 AppCAD
Reference Temperature (C) Noise Bandwidth (MHz) Cascade Gain (dB) Input Intercept Point (dBm) Output Intercept Point (dBm) IM3 Output Level (dBm)
25.0 1.00000 1.40 9.6 11.0 -107.8
1) 2)
SAW filter S+M B4672 PMB 2333 Mixer
Overall figures
Hewlett-Packard NoiseCalc AppCAD +---+ +---+ +---+ +---+ +---+ -| 1 +---| 2 +---| 3 +---| 4 +---| 5 ++---+ +---+ +---+ +---+ +---+ Noise Figure (dB) 0.10 1.65 3.10 3.10 12.00 Gain (dB) -0.10 20.00 -3.10 -3.10 4.50 IP3 (dBm) 200.00 20.00 200.00 40.00 11.00 System Temp. (C) 25.0 Reference Temperature (C) 25.0 Input Power (dBm) -30.0 Noise Bandwidth (MHz) 1.00000 Pout (dBm) -30.1 -10.1 -13.2 -16.3 -11.8 Cascade NF (dB) 3.35 Cascade Gain (dB) 18.20 Noise Temperature (K) 337.0 Input Intercept Point (dBm) -7.9 Signal-to-Noise Ratio (dB) 80.7 Output Intercept Point (dBm) 10.3 Spur Free Dynamic Range (dB) 68.5 IM3 Output Level (dBm) -55.9 Nominal Detectable Sig (dBm) -110.6
1) 2) 3) 4) 5)
PCB loss PMB 2333 LNA Resistive pad, 3.1dB attenuation SAW filter S+M B4672 PMB 2333 Mixer
Semiconductor Group
60
09.97
PMB 2333
3.3.3
Measurement results
Cascaded figure measurements
20 15 10 5 gain [dB] 0 -5 -10 -15 -20 -25 800 850 image response 900 frequency [MHz] 950 gain NF 9 8 7 6 5 4 3 2 1 0 1000 noise figure [dB] SSB noise figure [dB]
Figure 24: Cascade gain, SSB noise figure versus frequency
20 18 16 conversion gain [dB] 14 12 10 8 6 4 2 0 -30 -25 -20 -15 -10 LO power level [dBm] -5 0 5 NF gain
10 9 8 7 6 5 4 3 2 1 0
Figure 25: Cascade gain, SSB noise figure versus LO power
Semiconductor Group
61
09.97
PMB 2333
0
-5
|S11, AI|
-10
-15
-20
-25 0 500 1000 frequency [MHz] 1500 2000
Figure 26: AI input return loss versus frequency
Semiconductor Group
62
09.97
PMB 2333
3.3.4
Circuit diagram and PCB layout
Figure 27: Circuit diagram
Semiconductor Group 63 09.97
PMB 2333
PCB dimensions: 80 x 50 mm Substrate material: FR4 Substrate height: 0.8 mm
Figure 28: PCB top side
Semiconductor Group 64 09.97
PMB 2333
Figure 29: PCB bottom side
Semiconductor Group 65 09.97
PMB 2333
:
Figure 30: PCB component placement top
Semiconductor Group 66 09.97
PMB 2333
Figure 31: PCB component placement bottom
Semiconductor Group 67 09.97
PMB 2333
Receiver/SAW Application - List of Components Item 1 2 3 4 5 6 7 Quantity 1 2 2 2 1 2 8 Reference C9 C8, C18 C6, C7 C2, C3 C4 C16, C17 C5, C10, C12, C14, C15, C19, C24, C25 C11, C20 C1 C21 J2 R1 R5, R6 R3 R4, R7 L1 L4 L6 L5 L3, L7 L2, L8, L9 IC1 FIL1 Value 1.8 pF 4.7 pF 5.6 pF 15 pF 18 pF 27 pF 33 pF Part SMD/0603 SMD/0603 SMD/0603 SMD/0603 SMD/0603 SMD/0603 SMD/0603
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
2 1 1 1 1 2 1 2 1 1 1 1 2 3 1 1 1 5
1 nF 3.3 nF 1 F 0 27 33 56 1.0 k 3.3 nH 4.7 nH 8.2 nH 33 nH 68 nH 100 nH PMB 2333 B4672
SMD/0603 SMD/0603 SMD/A SMD/0603 SMD/0603 SMD/0603 SMD/0603 SMD/0603 SMD/0603 SMD/0603 SMD/0603 SMD/0603 SMD/0805 SMD/0805 Siemens S+M
Tantalum
Toko LL1608-FH Toko LL1608-FH Toko LL1608-FH Toko LL1608-FH Toko LL1608-FH Toko LL1608-FH
J1 connector X1, X2, X3, SMA X4, X5 connector
Stocko MKS 1655-6-0-505 Suhner 82 SMA 50-0-41 or Rosenberger 32 K 141-400A2
Semiconductor Group
68
09.97
PMB 2333
4
Package Outlines P-TSSOP-16 (Plastic Package)
Sorts of Packing Package outlines for tubes, trays etc. are contained in our Data Book "Package Information". SMD = Surface Mounted Device Semiconductor Group 69
Dimensions in mm 09.97


▲Up To Search▲   

 
Price & Availability of PMB2333

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X